Orange pulp and peel fibres: minimally processed by-products for water binding and gelling in foods

Sebastian Schalow1, Mary Baloufaud2, Thibaut Cottancin2, Jürgen Fischer3, Stephan Drusch1

1Department of Food Technology and Food Material Science, TU Berlin, Germany
2IUT Lyon 1, France
3Fiberstar Inc., USA

4th International ISEKI_Food Conference, Vienna, 7th July 2016
Dietary Fibre

Carbohydrate polymers, non-digestible by endogenous enzymes of the small intestine

Codex Alimentarius (2009)

Physical effects

- Water binding
- Viscosity increase
- Blood cholesterol regulation
- Blood sugar regulation
- Fermentation in large intestine

Physiological effects

[Diagram showing cell wall model type I - Dicotyledons: Carpita & Gibeaut (1993)]

Cellulose microfibrils

Pectin network

Xyloglucan

By-products rich in cell walls

Citrus peels

Apple pomace

Orange fibres | S. Schalow | ISEKI_Food Conference 2016
Page 2
Upcycling of fruit processing by-products

Isolation of pectin

Citrus peels
- 20-30 % extractable pectin

Gelling mechanism of high-methoxylated pectins
- Junctions zones by H-Bonds and hydrophobic interactions
- Conditions
 - Sugar > 55%
 - pH: 2.5… 3.5
 - T: 50…100°C
- Stabilizing jams and fruit spreads

FAO statista (2016); Fava et al. (2013); May (1990); Thibault et al. (2003)
Minimally processed orange fibres

- Can pectin-rich orange fibres be directly utilized as a gelling agent in foods?
- Do the functional properties of pulp and peel fibre differ from each other?

<table>
<thead>
<tr>
<th></th>
<th>Pulp fibre*</th>
<th>Peel fibre*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightness (L)</td>
<td>85.4</td>
<td>76.5</td>
</tr>
<tr>
<td>Intensity red (a)</td>
<td>0.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Intensity yellow (b)</td>
<td>18.4</td>
<td>20.0</td>
</tr>
<tr>
<td>Physical parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapped density (g/cm³)</td>
<td>0.64</td>
<td>0.72</td>
</tr>
<tr>
<td>True density (g/cm³)</td>
<td>1.50</td>
<td>1.49</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.58</td>
<td>0.52</td>
</tr>
<tr>
<td>Molecular parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GalA (% DS)</td>
<td>27.8</td>
<td>29.4</td>
</tr>
<tr>
<td>Dmeth (%)</td>
<td>68.6</td>
<td>65.7</td>
</tr>
<tr>
<td>Protein (% DS)</td>
<td>7.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Ash (% DS)</td>
<td>2.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>

*Particle size (90th percentile): 150 µm
Aims and methods

• Investigation of the water binding properties as affected by external factors during rehydration.
• Determination of the gelling efficiency in dependence of sugar-acid ratio during gel preparation.
• Comparison of the texture properties of fibre gels with gels from isolated pectins.

Water binding properties

- Water uptake capacity (WUC)
 Capillary suction (2 h) at 20°C

- Water retention capacity (WRC)
 Soaking (18 h) at 20°C / 80°C
 - High shear
 - pH 3.0 ... 6.0
 - CaCl₂ 0.05 ... 0.50 mL

Gel preparation

Experimental design

<table>
<thead>
<tr>
<th>Material (Conc.)</th>
<th>Solids</th>
<th>Citric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulp, Peel (1%)</td>
<td>55%, 60%</td>
<td>6mL, 10mL</td>
</tr>
<tr>
<td>Citrus pectin* (0.28%)</td>
<td>55%, 60%</td>
<td>3mL, 6mL</td>
</tr>
</tbody>
</table>

*GalA: 80.9%, Dmeth: 69.8%
Gel characterization

Rheology – gel formation

- Gel point (GP): T (°C) at $G' = G''$
 - Oscillation test
 - γ (const.): 0.001
 - f (const.): 1 Hz
 - Cooling rate: 1 K/min
 from 105 ° to 10°C

Texture analysis – gel elasticity

- Breaking strength F_{max} (N)
 - Pressure test after 24 h (20°C)
 - Cylinder probe \varnothing: 10 mm
 - Penetration depth: 15 mm
 - Penetration speed: 1 mm/s
Water binding properties of fibres

Water uptake (g H₂O/g fibre)

Water retention (g H₂O/g fibre)

Water retention (g H₂O/g fibre)

Water retention (g H₂O/g fibre)

Orange fibres | S. Schalow| ISEKI_Food Conference 2016
Page 7
Fibre gel properties (gel points)

- Very low pH values are necessary to form sugar-acid gels
- Pulp fibre shows similar gel points compared with isolated citrus pectin
Fibre gel properties (gel texture)

Fibre gels

- **Pulp**
- **Peel**

Hypotheses

- Increased gel elasticity at lower solids load
- Larger junction zones / pectin aggregation
- Pectin „Annealing“ during long term-storage
Conclusions

Minimally processed orange fibres

Multi-functional food processing by-products rich in pectin

- Water binding properties
 - Rapid water absorption / high water retention
 sensitive to pH, T, cations, shearing

- Gelling properties
 - Slow setting gels with soft texture
 sensitive to sugar-acid ratio

Promising ingredients for stabilizing food systems

Pulp fibre vs. Peel fibre

Functionality

Differences in physical and chemical structure

Processing (Drying)

Plant tissue (Endocarp/Albedo)
Thank you!

Dr. Sebastian Schalow
Department of Food Technology and Food Material Science
Institute of Food Technology and Food Chemistry
Technische Universität Berlin
s.schalow@tu-berlin.de